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A class of representations for Bloch electrons in a magnetic field is obtained by using only

the translational properties of the Hamiltonian.

The condition that these basis functions reduce

to Bloch functions for zero magnetic field is included to obtain a set of magnetic Bloch functions.
Since no approximation is made at any stage, these results may be carried over to a many-

particle formulation.

This representation is used to derive the well-known theorems for de-

scribing the motion of Bloch electrons in a magnetic field. In all cases the previous results
are shown to be modified in the same manner, i.e., the wave vector k is to be replaced by the
operator K symmetrically. Thus the appropriate space for describing the motion of Bloch elec-
trons in a magnetic field is an operator space and not the wave-vector space.

I. INTRODUCTION

The motion of Bloch electrons in a magnetic field
has been studied by many authors.!™?® Some authors
have used the effective-Hamiltonian formalism,!+3~7
while others have considered the translational prop-
erties 2710 in the presence of a magnetic field. Dif-
ferent authors have used different basis functions to
formulate the effective Hamiltonian. But, as noted
by Kohn, * the form of the effective Hamiltonian is
not unique. It depends sensitively on the choice of
the basis functions. Also, the way the solution is
obtained is influenced by the choice of the basis
functions. It has been realized that the complex
problem of Bloch electrons in a magnetic field can
be enormously simplified by the right choice of the
basis functions.

It is well known that in the case of Bloch electrons
in a magnetic field, the Bloch functions do not form
a useful representation, as there are singular inter-
band matrix elements. The Bloch functions are a
consequence of invariance under a lattice translation,
and in a magnetic field the difficulty is that the ex-
pression for the interaction energy contains the elec-
tron coordinates, so that the periodicity of the Ham-
iltonian is lost. Therefore, Harper? introduced
Bloch-type eigenfunctions which reduce to Bloch
functions in the limit of zero magnetic field. The
Luttinger-Kohn functions® can be considered as a
localized form of these functions. Subsequently,
different basis functions were used by Wannier, °
Blount, ® and Roth, ” all of which reduce to the Bloch
functions in the limit of zero magnetic field. We
can regard these as different types of magnetic Bloch
functions. However, it was not possible to show that
the magnetic Bloch functions formed a complete set.
Thus, when these functions were used to obtain an
effective Hamiltonian in the form of a power series
in B, the question of convergence of the series was
not answered. The use of an effective Hamiltonian
could only be justified asymptotically as B approaches
zero. 8
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Brown®'!! has applied the theory of group repre-
sentations to the Bloch electrons in a magnetic field.
He has shown that the set of operators which com-
mute with the Hamiltonian, which he called the mag-
netic translation operators, form a ray group. These
operators form a subgroup of the operators for a
free electron in a magnetic field.® However, there
is a difficulty in the generalization of the Born—-von
Kirmaén boundary conditions, and Brown has shown
that the periodic boundary conditions can be invoked
only if the magnetic field is in the direction of some
lattice vector. In this case the energy eigenfuctions,
which are N-fold degenerate, serve as basis func-
tions and a set of generalized Wannier functions can
be constructed. These representations are charac-
terized by a wave vector a whose domain is smaller
than the Brillouin zone by a factor N in each of the
directions normal to the field. However, this meth-
od is not useful for the more general case where the
magnetic field is in an arbitrary direction, since
suitable basis functions have to be found without in-
voking any periodic boundary conditions.

Zak®'213 hag introduced a kq representation in
which the states are specified by eigenvalues of
finite translations in the direct and‘reciprocal spaces.
Here a has the meaning of a quasicoordinate and
gives the location of the electron inside a unit cell
of the Bravais lattice without specifying in which of
the unit cells the electron is. However, when he
considers the dynamics of Bloch electrons in exter-
nal fields, he winds up in the magnetic Bloch-func-
tion representation before deriving the “standard
results.” Thus, it is not clear as to how this rep-
resentation simplifies the problem of Bloch electrons
in a magnetic field.

It is clear from the foregoing remarks that, while
it has been realized that the problem of Bloch elec-
trons in a magnetic field can be enormously simpli-
fied by the right choice of the basis functions, no
attempt has been made to obtain a complete set of
functions based on the symmetry of the problem ex-
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cept in the special case where the magnetic field is
along a lattice vector.®!' It was assumed that it
would not be possible to use symmetry properties
for the general case when the magnetic field is in
an arbitrary direction, since the periodic boundary
conditions can not be used.

In Sec. II, we show that it is possible to obtain a
class of representations for Bloch electrons in a
magnetic field in an arbitrary direction from con-
siderations of translational symmetry properties
alone. If we put in the condition that these functions
reduce to Bloch functions for zero magnetic field,
then they become the Roth functions.” Therefore,
these functions should be the right choice for the
basis functions for simplification of this complex
problem. Further, no approximation is made at
any stage, and therefore the results may be car-
ried over to a many-particle formulation.

In Sec. III, we show that the well-known theorems
for describing the motion of Bloch electrons in a
magnetic field can be derived in a very simple man-
ner by using this representation. It is shown that
in all cases the previous results are to be modified.

Our results reduce to these well-known results only
in the limit of zero magnetic field. It is also shown

that our results indicate that in a magnetic field the
motion of Bloch electrons should be described in an
operator space and not in the wave-vector space, as
has been done till now. This operator space reduces
to the wave-vector space in the limit of zero mag-
netic field. Some of these results have already been
derived by Zak!?'!® by essentially using the same rep-
resentation, though he starts out in a different rep-
resentation, but we rederive them in a simple and
straightforward way for the sake of completeness.

II. BASIS FUNCTIONS

The Hamiltonian for an electron in a periodic po-
tential and a uniform magnetic field is
g | Py s KRR ()
2m|{= ¢ ’
where A (¢) is the vector potential and e is the mag-
nitude of the electronic charge. In the linear gauge,
for a uniform magnetic field, we have

A@r)=1.VK | )

where VA is a constant dyadic. There is no loss of
generality in selecting this gauge, since the results
can be proved for an arbitrary gauge by performing
a gauge transformation.

There is a translation operation under which the
Hamiltonian is invariant, even though it is not in-
variant under pure spatial translation. There is a
simple physical reason for this. If a charged par-
ticle is transported from one point of a periodic lat-
tice to an equivalent one, it would be necessary to
exert a force to cancel the effect of the magnetic
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field so that the charge is in an equivalent state of
motion at the new site. This gives rise to an im-
pulse which corresponds to the shift in kinetic mo-
mentum. So the operators which commute with the
Hamiltonian should incorporate this momentum shift.
The set of operators which commute with the Ham-
iltonian are called magnetic translation operators.®
We now want to obtain the magnetic translation op-
erator in the linear gauge.

Let

B=p+le/c)T VA . (3)

It can be easily shown that the components of f do
not commute with one another. From (1) and (3),
we have

H=P*/2m+V(r). @)
Let - -
B=p+(e/c)VA-T. (5)

The components of ?0 do not commute:
[EOx’B)y]=(i€ﬁ/C)B, (6)

where B is the magnetic field which is taken in the
2z direction. It can be shown that

[P, B,]=0 . ()

From (4) and (7) we have

[H,e® Ro]=0 , @)

where Ris a lattice vector. So in the linear gauge,
the magnetic translation operator is

T(R)=e®E . (9)

It can be easily shown that these operators form a
ray group. Further, if ¢ (17, t) is an eigenfuction of
H, T(R)Y(T, ) must also be an eigenfunction of H.

Let ¢, (F, B)be a complete set of orthonormal
basis functions, where k is the reduced wave vector
and % is a band index. The existence of magnetic
translation operators shows that some types of
bands exist. We know that for completely free elec-
trons the eigenfunctions of the Hamiltonian are the
plane waves which are therefore natural choices for
the basis functions:

¢>9,E(;, §=0)=eian'Fei§'E, (10)

where 3,, is any reciprocal-lattice vector. We also

Xknow that for electrons in a periodic potential (B =0),

the eigenfunctions of the Hamiltonian are the Bloch
functions, which are therefore natural choices for
basis functions:

¢ (T, B=0)= U,z )T, (1)
where Ung(f) is periodic in T. So for electrons in a

periodic potential and in a uniform magnetic field,
we write
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i (F, B)=C e 8 F (12)
where C,, is an operator which will be some function
of k ﬁ and r. We note that this does not involve
any approximation. We can always find an operator
to obtain a function from another function. We now
expand the wave function (T, #) in terms of these
basis functions:

W(F, 1) =2 b (Fh, (K, 1), (13)
nk

where ¥, (k, #) are the time-dependent functions. It

is understood that we shall go to the limit of contin-

uous k, but we keep the summation for convenience.

From (12) and (13), we have

W&, =2 {Cre ™}, &, ). (14)
nk
We can write this as
o(F, t) :Zée"” D, v, (K, 1), (15)
n
where
D = ()t
Pn‘(gn) ’ (16)

and (_(E"‘)'r is the Hermitian conjugate of the complex
.conjugate of C In deriving (15) from (14), it ap-
pears as if an approximation is involved, that C
does not depend on the gradient with respect tor.
But this is not true. We could easily start with (15),
which is as good a starting point, and which does
not involve any approximation. Here D, does not
contain V, since i, (§, t) is independent of r and

#(¥, t) is not an operator. Then (14) can be obtain-
ed from (15), and D, and C, are related as in (16).
From (9) and (15) we obtain

TEWG, 1) = exp [zﬁ : (g EVE- ?)]Zie 5y F, 1),

Also amn

FZéeiE'Fﬁ,,zp,,(E, t) =Zk‘{-iV,,e“? 1D, 1, (K, £) . (18)
n n

Since iV, is Hermitian, we have

rZe“ D, ¥, (K, £)= Z e®5v, Dy, (K, 1). (19)
nk
From (17) and (19), we obtain
TRW(E, t) = Le"‘ FpiRis GenRod y (K,4), (20)
nk
where
Ko =k + (e/hc)VA-iv, . (21)

Since T(R)Y(T, ) is also an eigenfunction of H, we
can write in analogy with (15)

TRWG, )=9' @, )=2 e Dy, (K, 1).  (22)
nk

From the translational property, (20) and (22)
should have the same form. So it follows that
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e Bk myst commute with D,. This is neces-
sary in the case of ¢#® ¥, but w1the"‘R ‘B there

could be a phase factor 1nv01ved But commuting is
sufficient. [It is important to note that Ko commutes
with the effective Hamiltonian in Eq. (40).] There-
fore, I_) must be perlodlc in r. However, we note
that the components of Ko do not commute. It can
be shown that

(Ko Koyl = ieB/Hic . (23)
We define
R=k+ (e/nc) K(iv,). (24)
In the linear gauge
K=K+ (e/hic)iV, VA . (25)
It can be shown that
|K,,K,]=~ieB/hc (26)
and
[K,K,]=0. (27)

Therefore, D must be a function of K Also, since
the different components of K do not c commute, D
can always be defined as a symmetr1c function of
K Therefore from the translational properties
we requ1re D to be periodic in T as well as to de-
pend on K_ “This defines a class of representation
for Bloch electrons in a magnetic field. Included
in this class are the magnetic Bloch functions, the
orthogonalized-plane-wave representation, !* and
the K.p representation. !* It also includes the rep-
resentation of Blount,® which omits small matrix
elements of the potential and which is a better rep-
resentation near a magnetic breakdown region.

From the translational properties of Bloch elec-
trons, in the absence of any external field, we re-
quire that our basis functions must reduce to Bloch
functions for B=0. We shall now show that, if we
put in this condition, that the Roth functions’ are ob-
tained as the natural choice for the basis functions.
From (11), (12), and (16), we note that for B=0,

D,g(F) must reduce to U,;(¥). We also  note that
both D,g(¥) and U,z (T) are periodic in T. Fur-
ther, D,g (r) is a symmetric function of K and K
reduces to k for B=0. Therefore, the s1mp1est
choice for D,,g( T) is that it is the operator obtained
from U,; (T) by replacing K by K in a symmetric
manner. Therefore,

D, (T)=U,g(F). (28)

We know that any symmetric functionf(g) can be
expanded as

= - RPpne 2
FR)= [ dpeBPr (). (29)
Therefore, we have, since K is Hermitian,
FHR)= [ dpe'®Pr(5), (30)
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from which we have

FUR)=[F(R)*]* . (31)
Therefore, we have
[F&)]*=5 (K®). (32)
From (16), (28), and (32), we obtain
Cog=Ung*. (33)
From (12) and (33), the basis functions are
bt (F)=U,;g*(F)e""'; . (34)

These functions were first used by Roth” as basis
functions for Bloch electrons in a magnetic field.
Roth had used these functions intuitively, “with less
motivation” (Appendix of Ref. 7), and the justifica-
tion of their use was that they yielded the correct
results. However, we have made use of the in-
variance properties of the Ham1lton1an to obtain
these functions.

We note that ¢,; () are not normalized. The
normalization is determined by the matrix

N, )= faF U! (35)

A set of functions V,g can be built from U,z by using
the multiplication theorem” for symmetric opera-
tors. It has been shown by Roth!® that

VnK= UnK"'[ZE? Un'iﬁ. fdka U:’ika Uni"'"'] ’

(36)
where

h=eB/27c . (37)

Here we have followed the notation of Zak'? that the
rectangular brackets mean that in the expression
inside them, K is replaced by K symmetrmally,
i.e., [f(k)] is the value obtamed after k is re-
placed by K symmetrically in f (k) We shall use
this notation in what follows. So the orthonormal
basis functions are

bnz ()= V,gs @) ™~ (38)

We also note that the Roth functions’ are obtained
from the condition that the basis functions should
reduce to Bloch functions for B=0, but the other

functions mentioned above have the same transla-
tional properties.

III. DYNAMICS OF BLOCH ELECTRONS

We shall now show that the well-known theorems
for describing the motion of Bloch electrons in a
magnetic field can be derived in a very simple man-
ner by using the above representation. We shall
also show that in all cases the previous results are
to be modified. Our results reduce to the previous
results only in the limit of zero magnetic field. Some

OF BLOCH ELECTRONS..
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of these results have been already derived by Zak'?
by using essentially the magnetic Bloch function
representation, though he starts out in the kg rep-
resentation, but we rederive them in a more simple
and straightforward way for the sake of complete -
ness.

Using the above representation, we obtain

<K>=§ ox(, DK 9,(, 1). (39)

By using the same representation, it has been shown
by Roth!® that the effective Hamiltonian is

Hypp () = 8,(R) 6,0 +hH s (R) 4+ . (40)
From (39) and (40), we have
4B 1 % s@). (a1)
Using the multiplication theorem, " we obtain
[K 8(K)]— —— [V €]><B (42)

where, in our notation, [v.8] is the result obtained
afterE is replaced by K K symmetrically in v,§. From
(41) and (42), we obtain

AR __e 3
3t -~ (/%) 8]xB) . (43)
Comparing this with the classical result
mV = - (e/c)VxB , (44)

we find that in a magnetic field, the kinetic momen-
tum is 7K and the velocity is [(1/ n)v,§]. Here the
brackets mearlx that k is replaced by K symmetrlcal-
ly in (1/%)V,8. We have already shown that k is re-
placed by g in the periodic part of the Bloch function.
Thus in a magnetic fleld the wave vector Kk is re-
placed by the operator K and the appropriate space
is the K space and not the & space. This is con-
firmed 1 by the fact that in a magnetic field, the vari-
ables k,, k,, and %, are no longer good quantum
numbers. However, since the magnetic field is
taken in the z direction, K,=%,, and from (43) it

follows that K, is a constant of motion. From (26),
we have
(X, (c#/eB)K,]=1/i . (45)

We draw an analogy between this equation and the
ordinary commutation rule between coordinates
and momenta

[pm qx] = ;i/l (46)
by making the identification
p+=Ks q.=(c7#/eB)K, . (47)

We apply the Bohr-Sommerfeld quantization condi-
tion

$p.dq,=2mln+7)7, (48)
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where # is a positive integer and ¥ is some “phase
factor.” We substitute (4'7) in (48) to find

$K,dK, = 27(n zﬁy(k) )eB A (E)], (49)

where the integral runs along the curve bounding
a cross section of a surface of constant energy
perpendicular to the field and has a value equal
to the area [A (k)] of this cross section. Therefore,
the area in K space [A(k)], the operator correspond-
ing to the area of the orbit, is quantized for constant
energy and constant 2,. This is a generalization
of the Onsager relation.’” We note that [¥(k)] is an
operator obtained from y(k) by replacing k with
K. The operator nature of ¥ has been clearly
established by Roth, 18 who has derived a similar
relation for the cross-sectional area of the orbit.
This result has also been derived by Zak, '? but
he missed the point that [¥(k)] is an operator.

We shall now derive an expression for the ef-
fective mass. From (40), we have

%H{ ng] - L [[v:81, (6@, (50)

where on the right-hand side the outside bracket
means the commutation relation. Using the multi-
plication rule,” we obtain

d[1 _ P8 »]
dt[ﬁvks]_ £ [EEEEW & xB)|. (51)

From (42) and (43), we have
d* ,f [vi8¥B]. (52)

From (51) and (52), we obtain

df1 1 928 *]
at |:h‘ ng] [%’ ook © ] - (53)
We have already shown that.in a magnetic f1e1d

the kinetic momentum is ﬁK and the velocity V is
[(1/7)v,8]. Therefore, we can write (53) as

m*V =1k, (54)
where 1/m* is the inverse effective mass

1 1 3% (
2 2 .99 55
m* B okak’ )
Equatmn (54) is the fam111ar expression, except
that k is to be replaced by K symmetrically.
We have seen that the area of cross section de-

pends on the energy of the state whose quantum
number is #. From the definition of the cyclotron

frequency, we have

ds/dn = hw,. (56)
From (49) and (56), we obtain the expression for
cyclotron frequency

27eB (dA\™!
YT Ton® (dé’) ’ 57)

|

The cyclotron mass is defined as
me=eB/cw,. (58)

From (57) and (58), we obtain the familiar expres-
sion for the cyclotron mass

2
r® dA (59)

The operator corresponding to the orbit radius
is given by the relation

mcEwi:ehm'}K xB. (60)
From (58) and (60), we have
p=(ch/eB)K xB. (61)
It can be easily shown that
h(K_Ko) xB=(e/c)B?(iV,)., (62)

where (iV,), is the component of iV, perpendicular
to the magnetic field. From (61) and (62) we have

(ivk)l=_§+ Eo, (63)
where
Po=~— (fic/eB*)K, % B. (64)

Since Ko commutes with the effective Hamiltonian,
Do is a constant of motion. From (23) and (64),
we have

[poxs Poy) = ific/eB. (65)

Thus p,, and pg, can be considered as equivalent

to a canonical coordinate and momentum pair.

The area is 2mic/eB, and so the number of states
per unit area is

eB/27w7c. (66)

This gives the degeneracy of the Landau levels.

Thus the well-known results are obtained in a
very simple way by considering the motion of
Bloch electrons in ﬁ space. The conjugate oper-
ators K, and K, describe one degree of freedom,
the con]ugate operators Ko, and K, describe an-
other degree of freedom, and K,=%, describes
the third degree of freedom. =

IV. CONCLUSIONS

In this paper it has been shown that it is possible
to obtain a class of representations for Bloch elec-
trons in a magnetic field by using only the trans-
lational properties of the Hamiltonian. If we put
in the condition that the basis functions reduce to
Bloch functions for zero magnetic field, then these
become the magnetic Bloch functions first used by
Roth.” Since no approximation has been made at
any stage, these results may be carried over to a
many-particle formulation.

Note that the completeness of the set of the Roth
functions has not been proved. However, there
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are sets of this class of representation which are
complete, i.e., the k-D representation’s and the
plane-wave representation.

This representation has been used to derive some
well-known results. First, expressions for the
kinetic momentum and the velocity of the electron
in the magnetic field have been derived. Then a
generalized Onsager relation!” for the area in K
space was derived. In all cases it was shown that
the previous results are to be modified in the same
manner, i.e., the wave vector k is to be replaced
by the operator K symmetrically. Expressions
for the effective mass, the cyclotron mass, and the
cyclotron frequency were also derived in a simple
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way. Thus the appropriate space for describing
the motion of Bloch electrons in the magnetic field
is an operator space and not the wave-vector space.
The same principle can be applied to the pseudo-
potential theory of metals in a magnetic field. It
has been shown!® that the vector k in the zero-field
pseudopotential is to be replaced by the operator

K in the magnetic pseudopotential. Some of the
results in the section on dynamics have been de-
rived by Zak!*''® by using essentially the same rep-
resentation, though he started out in a different
representation, but here they have been rederived
in a simple and straightforward way for the sake

of completeness.
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A first-order magnetic phase transition has been observed in high-purity Yb metal. It
is characterized by a paramagnetic-to-diamagnetic transition with a large degree of hys-
teresis between 100 and 360 °K, and appears to be associated with an fcc-hcp martensitic

transformation.

The occurrence of this transition is characteristic of high-purity metal and

has not been previously reported. Several other properties such as the specific heat at 0
and 106 kOe, the volume and resistance changes the low-temperature resistivity, x-ray
data, and the pressure and strain dependence of the transition are discussed. The diamag-
netic phase is not superconducting above 0.015 °K. The fcc phase was obtained from the hcp
phase by applying strain ai room temperature and was also investigated. Itshows a strongly
temperature-dependent paramagnetic susceptibility down to 1.4 °K, but no magnetic ordering

could be detected down to 1.0 °K.

I. INTRODUCTION
Ytterbium metal is known to exist in three differ-
ent crystallographic modifications, namely, fcc,
bee, and hep. 12 Of these, the bee phase is the high-
temperature phase while the fcc phase is stable at
atmospheric pressure and up to about 660°C. It

was believed that the hcp phase was impurity stabil-
ized and had a narrow range of stability between
about 300 and 700°C, at atmospheric pressure. '
High-pressure studies on Yb have shown that the
fce-bee phase boundary has a negative slope and
that a fcc-bec transition could be induced by pres-



